Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Oxid Med Cell Longev ; 2022: 9354555, 2022.
Article in English | MEDLINE | ID: covidwho-2258876

ABSTRACT

C. camphora is a renowned traditional Unani medicinal herb and belongs to the family Lauraceae. It has therapeutic applications in various ailments and prophylactic properties to prevent flu-like epidemic symptoms and COVID-19. This comprehensive appraisal is to familiarize the reader with the traditional, broad applications of camphor both in Unani and modern medicine and its effects on bioactive molecules. Electronic databases such as Web of Science, PubMed, Google Scholar, Scopus, and Research Gate were searched for bioactive molecules, and preclinical/clinical research and including 59 research and review papers up to 2022 were retrieved. Additionally, 21 classical Unani and English herbal pharmacopeia books with ethnomedicinal properties and therapeutic applications were explored. Oxidative stress significantly impacts aging, obesity, diabetes mellitus, depression, and neurodegenerative diseases. The polyphenolic bioactive compounds such as linalool, borneol, and nerolidol of C. camphora have antioxidant activity and have the potential to remove free radicals. Its other major bioactive molecules are camphor, cineole, limelol, safrole, limonene, alpha-pinene, and cineole with anti-inflammatory, antibacterial, anxiolytic, analgesic, immunomodulatory, antihyperlipidemic, and many other pharmacological properties have been established in vitro or in vivo preclinical research. Natural bioactive molecules and their mechanisms of action and applications in diseases have been highlighted, with future prospects, gaps, and priorities that need to be addressed.


Subject(s)
Anti-Anxiety Agents , COVID-19 Drug Treatment , Cinnamomum camphora , Analgesics , Anti-Bacterial Agents , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Camphor , Ethnopharmacology , Eucalyptol , Hypolipidemic Agents , Limonene , Phytochemicals , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Safrole
2.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2043868

ABSTRACT

Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.


Subject(s)
Anti-Infective Agents , Brassica , COVID-19 , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Brassica/chemistry , Ethnopharmacology , Glucosinolates , Humans , Hypoglycemic Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/chemistry , Seeds
3.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-2023934

ABSTRACT

The flora of Kazakhstan is characterized by its wide variety of different types of medicinal plants, many of which can be used on an industrial scale. The Traditional Kazakh Medicine (TKM) was developed during centuries based on the six elements of ancient Kazakh theory, associating different fields such as pharmacology, anatomy, pathology, immunology and food nursing as well as disease prevention. The endemic Artemisia L. species are potential sources of unique and new natural products and new chemical structures, displaying diverse bioactivities and leading to the development of safe and effective phytomedicines against prevailing diseases in Kazakhstan and the Central Asia region. This review provides an overview of Artemisia species from Central Asia, particularly traditional uses in folk medicine and the recent numerous phytochemical and pharmacological studies. The review is done by the methods of literature searches in well-known scientific websites (Scifinder and Pubmed) and data collection in university libraries. Furthermore, our aim is to search for promising and potentially active Artemisia species candidates, encouraging us to analyze Protein Tyrosine Phosphatase 1B (PTP1B), α-glucosidase and bacterial neuraminidase (BNA) inhibition as well as the antioxidant potentials of Artemisia plant extracts, in which endemic species have not been explored for their secondary metabolites and biological activities so far. The main result of the study was that, for the first time, the species Artemisia scopiformis Ledeb. Artemisia albicerata Krasch., Artemisia transiliensis Poljakov, Artemisia schrenkiana Ledeb., Artemisia nitrosa Weber and Artemisia albida Willd. ex Ledeb. due to their special metabolites, showed a high potential for α-glucosidase, PTP1B and BNA inhibition, which is associated with diabetes, obesity and bacterial infections. In addition, we revealed that the methanol extracts of Artemisia were a potent source of polyphenolic compounds. The total polyphenolic contents of Artemisia extracts were correlated with antioxidant potential and varied according to plant origin, the solvent of extraction and the analytical method used. Consequently, oxidative stress caused by reactive oxygen species (ROS) may be managed by the dietary intake of current Artemisia species. The antioxidant potentials of the species A. schrenkiana, A. scopaeformis, A. transiliensis and Artemisia scoparia Waldst. & Kitam. were also promising. In conclusion, the examination of details between different Artemisia species in our research has shown that plant materials are good as an antioxidant and eznyme inhibitory functional natural source.


Subject(s)
Artemisia , Antioxidants/pharmacology , Artemisia/chemistry , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytotherapy , Plant Extracts/chemistry , alpha-Glucosidases
4.
Molecules ; 27(14)2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1928613

ABSTRACT

Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like 'Euphorbia neriifolia', 'phytoconstituents', 'traditional uses', 'ethnopharmacological uses', 'infectious diseases', 'molecular mechanisms', 'COVID-19', 'bacterial infection', 'viral infection', etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, ß-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3ß-friedelanol, 3ß-acetoxy friedelane, 3ß-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and ß-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).


Subject(s)
COVID-19 Drug Treatment , Communicable Diseases, Emerging , Euphorbia , Communicable Diseases, Emerging/drug therapy , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology
5.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911487

ABSTRACT

Ethnopharmacology, through the description of the beneficial effects of plants, has provided an early framework for the therapeutic use of natural compounds. Natural products, either in their native form or after crude extraction of their active ingredients, have long been used by different populations and explored as invaluable sources for drug design. The transition from traditional ethnopharmacology to drug discovery has followed a straightforward path, assisted by the evolution of isolation and characterization methods, the increase in computational power, and the development of specific chemoinformatic methods. The deriving extensive exploitation of the natural product chemical space has led to the discovery of novel compounds with pharmaceutical properties, although this was not followed by an analogous increase in novel drugs. In this work, we discuss the evolution of ideas and methods, from traditional ethnopharmacology to in silico drug discovery, applied to natural products. We point out that, in the past, the starting point was the plant itself, identified by sustained ethnopharmacological research, with the active compound deriving after extensive analysis and testing. In contrast, in recent years, the active substance has been pinpointed by computational methods (in silico docking and molecular dynamics, network pharmacology), followed by the identification of the plant(s) containing the active ingredient, identified by existing or putative ethnopharmacological information. We further stress the potential pitfalls of recent in silico methods and discuss the absolute need for in vitro and in vivo validation as an absolute requirement. Finally, we present our contribution to natural products' drug discovery by discussing specific examples, applying the whole continuum of this rapidly evolving field. In detail, we report the isolation of novel antiviral compounds, based on natural products active against influenza and SARS-CoV-2 and novel substances active on a specific GPCR, OXER1.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Biological Products/chemistry , Drug Discovery/methods , Ethnopharmacology/methods , Plants/chemistry , SARS-CoV-2
6.
Int J Environ Res Public Health ; 19(7)2022 03 29.
Article in English | MEDLINE | ID: covidwho-1841370

ABSTRACT

The documentation of ethnopharmaceutical knowledge has always been important for the preservation of countries' cultural, social, and economic identity. The COVID-19 pandemic with the collapse of healthcare, which has left the individual health to self-care, has also forced us to look back at ethnopharmacology from a practical point of view. This is the first study in Lithuania, dedicated entirely to ethnopharmaceuticals used for skin diseases and cosmetics, and the first study to analyse ethnopharmacology as a Lithuanian phenomenon during the ongoing COVID-19 pandemic. The main purpose of this study was to collect and evaluate ethnopharmaceutical knowledge regarding skin diseases and cosmetics in Siauliai District, Lithuania during the COVID-19 pandemic from July 2020 to October 2021. This study surveyed 50 respondents; the survey was conducted using the deep interview method. The respondents mentioned 67 species of medicinal plants from 37 different families used for skin diseases (64.18%), cosmetics (13.44%) and cosmeceuticals (22.38%). Of the 67 plant species, 43 (64%) were not included in the European Medicines Agency monographs and only 14 species (21%) of all included species were used with European Medicines Agency approved medical indications for skin diseases. In terms of public health, the safety of "self-treatment" and recovery rituals for skin diseases are no less important than ethnopharmacological knowledge and its application, this being especially relevant during the COVID-19 pandemic.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cosmetics , Skin Diseases , COVID-19/epidemiology , Cosmetics/therapeutic use , Ethnopharmacology , Health Knowledge, Attitudes, Practice , Humans , Lithuania/epidemiology , Pandemics , Phytotherapy , Skin Diseases/drug therapy , Skin Diseases/epidemiology
7.
Chin J Integr Med ; 28(12): 1127-1136, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1756894

ABSTRACT

Rhizoma phragmitis is a common Chinese herbal medicine whose effects are defined as 'clearing heat and fire, promoting fluid production to quench thirst, eliminating irritability, stopping vomiting, and disinhibiting urine'. During the Novel Coronavirus epidemic in 2020, the Weijing Decoction and Wuye Lugen Decoction, with Rhizoma phragmitis as the main herbal component, were included in The Pneumonia Treatment Protocol for Novel Coronavirus Infection (Trial Version 5) due to remarkable antiviral effects. Modern pharmacological studies have shown that Rhizoma phragmitis has antiviral, antioxidative, anti-inflammatory, analgesic, and hypoglycemic functions, lowers blood lipids and protects the liver and kidney. This review aims to provide a systematic summary of the botany, traditional applications, phytochemistry, pharmacology and toxicology of Rhizoma phragmitis.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Humans , Plant Extracts/pharmacology , Rhizome , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Ethnopharmacology
8.
J Ethnopharmacol ; 285: 114905, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1611829

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tongue coating has been used as an effective signature of health in traditional Chinese medicine (TCM). The level of greasy coating closely relates to the strength of dampness or pathogenic qi in TCM theory. Previous empirical studies and our systematic review have shown the relation between greasy coating and various diseases, including gastroenteropathy, coronary heart disease, and coronavirus disease 2019 (COVID-19). However, the objective and intelligent greasy coating and related diseases recognition methods are still lacking. The construction of the artificial intelligent tongue recognition models may provide important syndrome diagnosis and efficacy evaluation methods, and contribute to the understanding of ethnopharmacological mechanisms based on TCM theory. AIM OF THE STUDY: The present study aimed to develop an artificial intelligent model for greasy tongue coating recognition and explore its application in COVID-19. MATERIALS AND METHODS: Herein, we developed greasy tongue coating recognition networks (GreasyCoatNet) using convolutional neural network technique and a relatively large (N = 1486) set of tongue images from standard devices. Tests were performed using both cross-validation procedures and a new dataset (N = 50) captured by common cameras. Besides, the accuracy and time efficiency comparisons between the GreasyCoatNet and doctors were also conducted. Finally, the model was transferred to recognize the greasy coating level of COVID-19. RESULTS: The overall accuracy in 3-level greasy coating classification with cross-validation was 88.8% and accuracy on new dataset was 82.0%, indicating that GreasyCoatNet can obtain robust greasy coating estimates from diverse datasets. In addition, we conducted user study to confirm that our GreasyCoatNet outperforms TCM practitioners, yet only consuming roughly 1% of doctors' examination time. Critically, we demonstrated that GreasyCoatNet, along with transfer learning, can construct more proper classifier of COVID-19, compared to directly training classifier on patient versus control datasets. We, therefore, derived a disease-specific deep learning network by finetuning the generic GreasyCoatNet. CONCLUSIONS: Our framework may provide an important research paradigm for differentiating tongue characteristics, diagnosing TCM syndrome, tracking disease progression, and evaluating intervention efficacy, exhibiting its unique potential in clinical applications.


Subject(s)
COVID-19 , Diagnostic Techniques and Procedures , Ethnopharmacology/methods , Medicine, Chinese Traditional/methods , Tongue , Artificial Intelligence , COVID-19/diagnosis , COVID-19/therapy , Humans , Neural Networks, Computer , Outcome Assessment, Health Care/methods , Qi , SARS-CoV-2 , Tongue/microbiology , Tongue/pathology
9.
Phytomedicine ; 96: 153889, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1593530

ABSTRACT

BACKGROUND: Lonicera Linn. belonging to the family Caprifoliaceae, the largest genus in the plant family, includes about more than 200 species, which are mainly distributed in northern Africa, North America, Europe and Asia. Some species of this genus have been usually used in traditional Chinese medicine as well as functional foods, cosmetics and other applications, such as L. japonica Thunb. Bioactive components and pharmacological activities of the genus Lonicera plants have received an increasing interest from the scientific community. Thus, a comprehensive and systematic review on their traditional usage in China, chemical components, and their pharmacological properties of their whole plants, bioactive extracts, and bioactive isolates including partial structure-activity relationships from the genus is indispensable. METHODS: Information on genus Lonicera of this systematic electronic literature search was gathered via the published articles, patents, clinical trials website (https://clinicaltrials.gov/) and several online bibliographic databases (PubMed, Sci Finder, Research Gate, Science Direct, CNKI, Web of Science and Google Scholar). The following keywords were used for the online search: Lonicera, phytochemical composition, Lonicerae japonica, Lonicera review articles, bioactivities of Lonicera, anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, anti-diabetic, and clinical trials. This review paper consists of a total of 225 papers covering the Lonicera genus from 1800 to 2021, including research articles, reviews, patents, and book chapters. RESULTS: In this review (1800s-2021), about 420 components from the genus of Lonicera Linn. including 87 flavonoids, 222 terpenoids, 51 organic acids, and other compounds, together with their pharmacological activities including anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, antidiabetic, anti-allergic, immunomodulatory effects, and toxicity were summarized. CONCLUSION: The relationship is discussed among their traditional usage, their pharmacological properties, and their chemical components, which indicate the genus Lonicera have a large prospect in terms of new drug exploitation, especially in COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Lonicera , Drug Discovery , Ethnopharmacology , Humans , Medicine, Traditional , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/pharmacology , SARS-CoV-2
10.
Br J Clin Pharmacol ; 87(9): 3455-3458, 2021 09.
Article in English | MEDLINE | ID: covidwho-1314029

ABSTRACT

There has been high interest in the use of traditional medicines for COVID-19 from early in the course of the pandemic. Significant advances in the science of ethnopharmacology have helped to introduce chemical entities identified from natural sources into modern medicine. However, the wider integration of natural products into the modern drug discovery process will require enhanced collaboration amongst the pharmaceutical industry, academic research units, regulatory bodies, ethics review committees and local, regional, continental and international organizations. Revisiting this topic holds promise of benefit for both the current and future pandemics.


Subject(s)
COVID-19 , Ethnopharmacology , Humans , Medicine, Traditional , Pandemics , SARS-CoV-2
11.
J Ethnopharmacol ; 279: 114356, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1274322

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Herbacetin is an active constituent of traditional Chinese medicines such as Ephedra sinica Stapf (MaHuang) and Sedum roseum (L.). Scop. (Hong JingTian). MaHuang was used to treat cough, asthma, fever, and edema for more than 5000 years, while Hong JingTian was used to treat depression, fatigue, cancers, and cardiovascular disease. Recent studies indicate that herbacetin and its glycosides play a critical role in the pharmacological activities of these herbs. However, currently, no comprehensive review on herbacetin has been published yet. AIM OF THE STUDY: This review aimed to summarize information on the chemistry, natural sources, and pharmacokinetic features of herbacetin, with an emphasis on its pharmacological activities and possible mechanisms of action. MATERIALS AND METHODS: A literature search was performed on the Web of Science, PubMed, and China Knowledge Resource Integrated databases (CNKI) using the search term "herbacetin" ("all fields") from 1935 to 2020. Information was also obtained from classic books of Chinese herbal medicine, Chinese pharmacopeia, and the database "The Plant List" (www.theplantlist.org). Studies have been analyzed and summarized in this review if they dealt with chemistry, taxonomy, pharmacokinetic, and pharmacological activity. RESULTS: Herbacetin is distributed in various plants and can be extracted or synthesized. It showed diverse pharmacological activities including antioxidant, antiviral, anti-inflammatory, anticancer, antidiabetic, and anticholinesterase. It is thought to have great potential in cancer treatment, especially colon and skin cancers. However, the bioavailability of herbacetin is low and the toxicity of herbacetin has not been studied. Thus, more studies are required to solve these problems. CONCLUSIONS: Herbacetin shows promising pharmacological activities against multiple diseases. Future research should focus on improving bioavailability, further studying its pharmacological mechanism, evaluating its toxicity and optimal dose, and performing the clinical assessment. We hope that the present review will serve as a guideline for future research on herbacetin.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Flavonoids/pharmacology , Medicine, Chinese Traditional/methods , Animals , Drugs, Chinese Herbal/chemistry , Ethnopharmacology , Flavonoids/isolation & purification , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Humans
12.
J Ethnobiol Ethnomed ; 17(1): 26, 2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1175331

ABSTRACT

BACKGROUND: Medicinal plants are the fundamental unit of traditional medicine system in Nepal. Nepalese people are rich in traditional medicine especially in folk medicine (ethnomedicine), and this system is gaining much attention after 1995. The use of medicinal plants has increased during the COVID-19 pandemic as a private behavior (not under the control of government). A lot of misinterpretations of the use of medicinal plants to treat or prevent COVID-19 have been spreading throughout Nepal which need to be managed proactively. In this context, a research was needed to document medicinal plants used, their priority of use in society, their cultivation status, and the source of information people follow to use them. This study aimed to document the present status of medicinal plant use and make important suggestion to the concerned authorities. METHODS: This study used a web-based survey to collect primary data related to medicinal plants used during COVID-19. A total of 774 respondents took part in the survey. The study calculated the relative frequencies of citation (RFC) for the recorded medicinal plants. The relationship between plants recorded and different covariates (age, gender education, occupation, living place, and treatment methods) was assessed using Kruskal-Wallis test and Wilcoxon test. The relationship between the information sources people follow and the respondent characteristics was assessed using chi-square test. RESULTS: The study found that the use of medicinal plants has increased during COVID-19 and most of the respondents recommended medicinal plants to prevent COVID-19. This study recorded a total of 60 plants belonging to 36 families. The leaves of the plants were the most frequently used. The Zingiber officinale was the most cited species with the frequency of citation 0.398. Most of the people (45.61%) were getting medicinal plants from their home garden. The medicinal plants recorded were significantly associated with the education level, location of home, primary treatment mode, gender, and age class. The information source of plants was significantly associated with the education, gender, method of treatment, occupation, living with family, and location of home during the lockdown caused by COVID-19. CONCLUSIONS: People were using more medicinal plants during COVID-19 claiming that they can prevent or cure COVID-19. This should be taken seriously by concerned authorities. The authorities should test the validity of these medicinal plants and control the flow of false information spread through research and awareness programs.


Subject(s)
COVID-19/prevention & control , Plant Preparations/therapeutic use , Plants, Medicinal , Adult , Aged , Ethnopharmacology , Female , Health Knowledge, Attitudes, Practice , Humans , Male , Medicine, Traditional , Middle Aged , Nepal , Surveys and Questionnaires , Young Adult
13.
Mol Cell Biochem ; 476(6): 2345-2364, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1083315

ABSTRACT

The pandemic of Serious Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) that produces corona virus disease (COVID-19) has challenged the entire mankind by rapidly spreading globally in 210 countries affecting over 25 million people and about 1 million deaths worldwide. It continues to spread, afflicting the health system globally. So far there is no remedy for the ailment and the available antiviral regimens have been unsatisfactory for the clinical outcomes and the mode of treatment has been mainly supportive for the prevention of COVID-19-induced morbidity and mortality. From the time immortal the traditional plant-based ethno-medicines have provided the leads for the treatment of infectious diseases. Phytopharmaceuticals have provided potential and less toxic antiviral drugs as compared to conventional modern therapeutics which are associated with severe toxicities. The ethnopharmacological knowledge about plants has provided food supplements and nutraceuticals as a promise for prevention and treatment of the current pandemic. In this review article, we have attempted to comprehend the information about the edible medicinal plant materials with potential antiviral activity specifically against RNA virus which additionally possess property to improve immunity along with external and internal respiration and exhibit anti-inflammatory properties for the prevention and treatment of the disease. This will open an arena for the development of novel nutraceutical herbal formulations as an alternative therapy that can be used for the prevention and treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Plants, Edible/chemistry , Plants, Medicinal/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/therapeutic use , COVID-19/etiology , Ethnopharmacology/methods , Host-Pathogen Interactions/drug effects , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/drug therapy , Virus Internalization/drug effects , Virus Replication/drug effects , Virus Replication/physiology
14.
J Ethnopharmacol ; 265: 113319, 2021 Jan 30.
Article in English | MEDLINE | ID: covidwho-735232

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Due to the outbreaks such as SARS, bird flu and swine flu, which we frequently encounter in our century, we need fast solutions with no side effects today more than ever. Due to having vast ethnomedical experience and the richest flora (34% endemic) of Europe and the Middle East, Turkey has a high potential for research on this topic. Plants that locals have been using for centuries for the prevention and treatment of influenza can offer effective alternatives to combat this problem. In this context, 224 herbal taxa belonging to 45 families were identified among the selected 81 studies conducted in the seven regions of Turkey. However, only 35 (15.6%) of them were found to be subjected to worldwide in vitro and in vivo research conducted on anti-influenza activity. Quercetin and chlorogenic acid, the effectiveness of which has been proven many times in this context, have been recorded as the most common (7.1%) active ingredients among the other 56 active substances identified. AIM OF THE STUDY: This study has been carried out to reveal the inventory of plant species that have been used in flu treatment for centuries in Turkish folk medicine, which could be used in the treatment of flu or flu-like pandemics, such as COVID 19, that humanity has been suffering with, and also compare them with experimental studies in the literature. MATERIALS AND METHODS: The investigation was conducted in two stages on the subject above by using electronic databases, such as Web of Science, Scopus, ScienceDirect, ProQuest, Medline, Cochrane Library, EBSCO, HighWire Press, PubMed and Google Scholar. The results of both scans are presented in separate tables, together with their regional comparative analysis. RESULTS: Data obtained on taxa are presented in a table, including anti-influenza mechanism of actions and the active substances. Rosa canina (58.7%) and Mentha x piperita (22.2%) were identified as the most common plants used in Turkey. Also, Sambucus nigra (11.6%), Olea europaea (9.3%), Eucalyptus spp., Melissa officinalis, and Origanum vulgare (7.0%) emerged as the most investigated taxa. CONCLUSION: This is the first nationwide ethnomedical screening work conducted on flu treatment with plants in Turkey. Thirty-nine plants have been confirmed in the recent experimental anti-influenza research, which strongly shows that these plants are a rich pharmacological source. Also, with 189 (84.4%) taxa, detections that have not been investigated yet, they are an essential resource for both national and international pharmacological researchers in terms of new natural medicine searches. Considering that the production of antimalarial drugs and their successful use against COVID-19 has begun, this correlation was actually a positive and remarkable piece of data, since there are 15 plants, including Centaurea drabifolia subsp. Phlocosa (an endemic taxon), that were found to be used in the treatment of both flu and malaria.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections , Ethnopharmacology/methods , Influenza, Human/drug therapy , Pandemics , Plants, Medicinal/classification , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Humans , Medicine, Traditional/methods , Phytotherapy , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL